This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

On the Redox Properties of Cyclophosphanes

J. Niemann^a; W. W. Schoeller^a

^a Fakultät für Chemie der Universitat, Bielefeld

To cite this Article Niemann, J. and Schoeller, W. W.(1987) 'On the Redox Properties of Cyclophosphanes', Phosphorus, Sulfur, and Silicon and the Related Elements, 30: 3, 803

To link to this Article: DOI: 10.1080/03086648708079295 URL: http://dx.doi.org/10.1080/03086648708079295

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

On the Redox Properties of Cyclophosphanes

J. Niemann and W.W. Schoeller*

Fakultät für Chemie der Universität, Postfach 8640, 4800 Bielefeld 1.

While sulfur rings form stable, isolable dications, corresponding dications of cyclophosphanes are not known so far. Here we report on the electrochemical formation of the mono- and dication of I (R=N(i-propyl) $_2$). The monocation of I is a stable species, even at room temperature. On the contrary the corresponding dication rearranges under a sequence of fast 1.2-shifts of the substituents, even at temperatures below -80° C to intermediary 'carbene-like' structures, which finally fragment into the diamino-phosphenium cation, I, and I (which subsequently polymerizes). Quantum chemical investigations are in support of these findings and suggest a general model for the redox properties of cyclophosphanes.

$$R - P - R \qquad S = S$$

$$\frac{1}{R}$$

$$\frac{1}{R}$$

$$\frac{1}{R}$$

$$\frac{2}{R}$$

$$R = N = N$$

$$i-prop$$

$$i-prop$$

$$\frac{3}{R}$$